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Multiple topplings and grain redistribution are two essential features in sandpile dynamics. A renormaliza-
tion group �RG� approach incorporating these features is investigated. The full enumeration of all relaxations
involving such an approach is difficult. Instead, we developed an efficient procedure to sample the relaxations.
We applied this RG scheme to a square lattice and a triangular lattice. As shown by the fixed point analysis on
a square lattice, the effect of multiple topplings leads the resultant height probabilities towards the exact
solution while the effect of grain redistribution does not.
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I. INTRODUCTION

Self-organized criticality �SOC� �1� provides a possible
pathway for exploiting the underlying mechanism of scaling
behavior in many natural phenomena. From a theoretical as-
pect, only a few rigorous solutions of SOC models were
found �2,3�. On the other hand, the renormalization group
�RG� approach, which is based on loss of scale at a fixed
point �4�, is a theoretical tool for investigating a system with
scaling behavior. It has been widely applied to critical phe-
nomena. Therefore, employing the RG approach in analyzing
SOC may have the potential to benefit the theoretical work
on SOC.

The Bak-Tang-Wiesenfeld �BTW� sandpile �5� is a proto-
type of SOC. In 1994, Pietronero, Vespignani, and Zapperi
�PVZ� �6� proposed the so-called dynamically driven RG
scheme for the BTW sandpile. It was shown on a square
lattice where critical exponents are faithfully estimated by
counting the relaxations for the map between the 2�2 RG
cells of different scales. Subsequently, Ivashkevich �7� has
furnished considerable refinements for the PVZ’s RG
scheme. From his study, not only the exponents but also the
height probabilities can be obtained. More recently, the dy-
namically driven RG has been applied to a triangular lattice
�8� and the directed sandpile �9�. In addition, the RG equa-
tion based on cross-shaped RG cells �10� was also studied.

In the above studies, RG equations were established using
the similarity of topplings observed at different scales. How-
ever, the essential feature of the BTW sandpile, multiple top-
plings, and grain redistribution �11� were seldom considered.
In the present study we attempted a probable refinement of
the RG scheme when multiple topplings and grain redistri-
bution are considered. Minimal design modifications were
made to the RG framework provided by PVZ and Ivash-
kevich such that the RG scheme became permissible. In
practice, when multiple topplings and grain redistribution are
considered, the number of relaxations will increase and be-
come eventually unbounded. This renders the counting
method employed earlier useless. Therefore, in place of the
earlier counting methods �6,7�, we developed a technique of

random sampling which proved to be efficient as well as
reliable. Subsequently, considerable improvement was ob-
tained for the height probabilities on a square lattice. Finally,
in order to exhibit the potential of this RG method, we also
applied this RG scheme to the sandpile on a triangular lat-
tice.

II. RG PARAMETERS

In order to express an RG scheme, it is necessary to de-
velop conventions to implement the changing of scale. Con-
sider a square lattice. Each square domain with area size
����=2��2� is called a � square and is positioned at i. Ac-
cordingly, the kth location of the nearest neighbor �NN� of �
square i can be conveniently labeled by ik and shown in Fig.
1�a� for k=1, 2, 3, and 4. The dynamics based on the RG
essentially follow the instruction of the original BTW sand-
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FIG. 1. �a� Construction of a � square i and its NNs ik for k
=1, 2, 3, and 4. �b� All Q corresponding to T3. A � square labeled
by a circle will transfer � grains to its NNs according to the arrows.
�c� A cell containing four � squares which are labeled by LT, LB,
RT, and RB. The height of a � square is printed inside the square.
�d� WH* for hLT=4, hLB=4, hRT=3, and hRB=3. �e� OIH

* and
XI�H*� for I=LT, where H* is obtained from �d�.
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pile which corresponds to the zero-scale prescription of the
RG scheme. For the zero scale, each location i is equipped
with a height hi which represents the grain number at zero
square i. If hi�4 for one specific i, then the zero square i
will topple through

hi → hi − 4,

hik
→ hik

+ 1. �1�

Initially, �hi� is stable, i.e., hi=1, 2, 3 or 4. The sandpile
dynamics are triggered by adding one grain to a randomly
chosen zero square and its height increases by one. If the
height of the chosen zero square exceeds 4, then the system
evolves by topplings until all hi�4 and the toppled zero
squares form an avalanche with an area A�0�, which is the
distinct zero squares that toppled. It is generally believed that
the probability distribution of the avalanche area P�A�0�� fol-
lows P�A�0����A�0��−�, where � is the area exponent.

For ��1, an effective representative of the height set
associated with each location i must be defined such that the
rule of toppling can be furnished at this scale. Let us imagine
that the topplings are similar at each scale. In the � square i,
the height hi is represented by counting the effective grains,
say � grains, aggregated in this area. Basically, � square i
with 1�hi�4 is referred to as stable as long as all the un-
derlying zero squares remain stable. Otherwise, if hi�4, it
indicates that some underlying zero squares are not stable.
This will induce a series of topplings of zero squares taking
place within the domain of � square. Note that the construc-
tion of � grains is essentially in response to the topplings of
zero squares. Suppose that dk zero grains contributed by �
square i are sent to � square ik. We approximate such a
process as � square i toppling by losing q̂ � grains and ren-
dering qk � grains for each NN � square ik, namely,

hi → hi − q̂ ,

hik
→ hik

+ qk, �2�

where we set q̂�1, qk=1 as dk�0, and qk=0 as dk=0. When

r = �
k=1

4

qk, �3�

we end up with an r-directional toppling denoted by Tr.
Therefore, a toppling can explicitly be listed in terms of the
sextuple

Q = �r, q̂,q1,q2,q3,q4� . �4�

For a fixed �q1 ,q2 ,q3 ,q4�, the value of q̂ in Eqs. �2� and
�4� has not been determined yet. In this paper, we assign

q̂ = 	r for r � 1,

1 for r = 0.

 �5�

For r�1, we follow the setting of Ref. �6� where q̂−�qk
=0 corresponds to � grain conservation. The case r=0 cor-
responds to Q= �0, q̂ ,0 ,0 ,0 ,0�, which refers to the break of
the � grain conservation, i.e., q̂−�qk= q̂�0. The sandpile
system on the �th stage will then dissipate q̂ � grains through

a toppling of T0. From a physical perspective, r=0 should
essentially minimize the q̂ value. Since q̂�1 must hold, the
convenient choice will be q̂=1 as r=0. This setting is con-
sistent with Ref. �11� and is checked numerically by the sec-
ond test in Sec. IV. Based on the construction of NNs for a �
square in Fig. 1�a�, we list all Q with r=3 in Fig. 1�b�. In
practice, mr sorts of Q, say m0=1, m1=4, m2=6, m3=4, and
m4=1, are found for each r.

Two more aspects appear to be crucial for the subsequent
analyses. Before triggering a sandpile evolution of the �th
stage, every height is stable and the probability of the height
of one � square being j is nj

���. Then, the property of height
for one � square is described as

n� ��� = �n1
���,n2

���,n3
���,n4

���� with �
j=1

4

nj
��� = 1. �6�

During a sandpile evolution of the �th stage, the probability
of a toppling being Tr is pr

���. The property of topplings for
one � square is described as

p� ��� = �p0
���,p1

���,p2
���,p3

���,p4
���� with �

r=0

4

pr
��� = 1. �7�

One Tr corresponds to mr kinds of Q. We assume that the
probability of occurrence of a specified Q is �pr

��� /mr�.
Extending the idea of Ivashkevich �7�, one can obtain the

relationship between n� ��� and p� ���. Consider a � square i with
hi=	 for 1�	�4. After adding one � grain to this � square,
it finally evolves to hi=
 as follows:


 = �	 + 1 for 	 � 3,

	 + 1 − q̂ = 	 4 for 	 = 4 and r = 0,

5 − r for 	 = 4 and r � 1,

 �

�8�

where there is no toppling for 	�3 and a toppling through
Tr happens for 	=4. For example, there are two ways to end
up with 
=3; by means of �i� 	=2 with probability n2

��� and
�ii� 	=4 and r=2 with probability n4

���p2
���. Items �i� and �ii�

increase the density of hi=3. On the contrary, item �iii� 	
=3 with probability n3

��� brings the height away from hi=3.
Then item �iii� decreases n3

���. Based on the concept of master
equation, the rate of change of n3

���, i.e., dn3
��� /dt, essentially

consists of items �i�, �ii�, and �iii�, i.e., dn3
��� /dt�n2

���

+n4
���p2

���−n3
���.

In general, we can write

dnj
���/dt � nj−1

��� + n4
����5−j − nj

���, �9�

where n0
���=0, �1= p0

���+ p1
���, and � j = pj

��� for j�2. Put the
steady-state assumption dnj

��� /dt=0 into Eq. �9�. Then the
relationship between n� ��� and p� ��� is given by

nj
��� = �

j+=4,−1

5−j

� j+ �
j+=1

4

j+� j+. �10�

A � square will lose p���= �p0
���+ p1

���+2p2
���+3p3

���+4p4
���� �

grains on average per toppling. Then, from the balance be-
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tween the input flow and output flow of a � square, we have
n4

���=1/ p���, which is exactly the same as Eq. �10� for j=4.
Note that Eq. �10� for j=4 is identical to the corresponding
equation �12� of Ref. �11� where T0 is considered. If T0 is not
considered, we must set p0

���=0 and then Eq. �10� is identical
to the corresponding equation in Ref. �7�.

III. RG DYNAMICS AND MAPPING RULE

In view of RG, the correspondence of toppling observed
at different scales plays a fundamental role. According to the
mapping rule �6�, a ��+1� square is referred to as a toppled
��+1� square if the toppled � squares inside a ��+1� square
span this ��+1� square from top to bottom or right to left.
Otherwise, this ��+1� square is a nontoppled ��+1� square.
Examples are shown in Figs. 2�a�–2�e� for �=0, 1, 2, 3, and
4, respectively, where A��� is the number of toppled �
squares. If the A�0� in Fig. 2�a� decreases, the toppled �
square for �=4, as shown in Fig. 2�e�, may become a non-
toppled � square. Hence, by substantially reducing A�0�, the
chance of forming a toppled � square is diminished. More-
over, it is well recognized that the shape of a toppling area on
�=0 stage is always compact and disklike �6�, e.g., Fig. 2�a�.
Thus, a threshold, above which the avalanche area A�0� can
induce the toppled � squares, is expected to be roughly pro-
portional to domain size ���� �6�, namely, A����1 for A�0�

�b���� and A���=0 for A�0��b����, where b refers to a cer-
tain constant less than unity, as illustrated in Fig. 2�e�.

The RG dynamics are essentially comprised of relaxation
procedures at each definite scale, which emerge as evolutions
of height configurations of sets of � squares. Take for in-
stance a cell consisting of 2�2 � squares located at the left
top �LT�, left bottom �LB�, right top �RT�, and right bottom
�RB�, as shown in Fig. 1�c�. A height configuration is pre-
scribed by the set H= �hLT,hLB,hRT,hRB�. The initial height
configuration H=H*, e.g., in Fig. 1�d�, is eventually deter-
mined as stable. If a � square I� �LT,LB,RT,RB� called
the initial � square receives one � grain from outside, then
the height configuration changes from H=H* to H=OIH

*,
where OI is an operator denoting hI→hI+1. Consider the
case OIH

* is not stable. Then a relaxation procedure follows,
as shown in Figs. 3�a�–3�c�,

OIH
* = H1 ——→

�I1,Q1�

H2 ——→
�I2,Q2�

¯ ——→
�IN,QN�

HN+1 = H**,

�11�

where N counts the steps of topplings within a relaxation
procedure and H=H** is stable and called the final height

configuration. The system then evolves by means of a se-
quence of topplings individually described by �Il ,Ql� for 1
� l�N, where Il� �LT,LB,RT,RB� denotes the toppling
position within the cell and Ql= �rl , , q̂l ,q1l ,q2l ,q3l ,q4l� de-
notes one specified Q.

It is worth noting that contrary to the previous treatments
�6,7�, the successive toppling steps need not be self-avoiding
during a relaxation. In practice, the value of N can be un-

bounded and N� N̂, where N̂ is the number of distinct

toppled � squares. When N� N̂, it is recognized that some of
the � squares topple at least twice. This case is appropriate
for the so-called multiple topplings, as exemplified by Fig.
3�a�.

The activation of the ��+1� squares essentially follows
the mapping rule mentioned above. For instance, the toppled
� squares shown in Fig. 3�a� span the 2�2 cell and then this
cell is represented by a toppled ��+1� square. Each corre-
sponding relaxation must be equipped with a toppling path

 = ��Il,Ql�� �12�

and d��= �d1� ,d2� ,d3� ,d4��, where dk� � grains are sent to the kth
location of NNs of the cell constructed by � squares LT, LB,
RT, and RB. A relaxation on the �th stage guiding a cell to a
toppled ��+1� square is called an active relaxation and its
associated  is called an active  denoted by a. Thus, the
 of Figs. 3�a� and 3�b� are a. On the other hand, the  of
Fig. 3�c� is not a a and this cell is not considered as a
toppled ��+1� square.

FIG. 2. An avalanche represented by � squares. The � square
filled in gray is a toppled � square. �a� A�0�=96, �b� A�1�=27, �c�
A�2�=8, �d� A�3�=2, �e� A�4�=1.

FIG. 3. Relaxations described by Eqs. �11� and �13� where H*

and I are obtained from Figs. 1�d� and 1�e�. �a� Multiple topplings.
The toppled � square LT topples twice where Y�H* , I�= �p1

��� /4�
��p2

��� /6��p4
��� /1�. �b� Grain redistribution. The unstable cell

evolves to a stable cell through the redistribution of � grains where
Y�H* , I�= �p2

��� /6�2. �c� The toppled � squares do not span a 2
�2 cell where Y�H* , I�= �p1

��� /4�. �d� The relaxation shown in �a�
described by Eq. �13�. �e� The relaxation shown in �b� described by
Eq. �13�.
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For =a, we approximate Eq. �11� as a ��+1� square
labeled by S topples through Q=Q�= �r� , q̂� ,q1� ,q2� ,q3� ,q4��
expressed as

OShS
* →

�S,Q��

hS
**, �13�

where hS
* and hS

** are the initial and final heights of ��+1�
square S, respectively, and OS is an operator for OShS

*=hS
*

+1. Notably, the requirements of hS
*=4, OShS

*=5, hS
**�4, and

q̂�=OShS
*−hS

**�1 must be fulfilled. The determination of Q�
according to qk�=1 for dk��0 and qk�=0 for dk�=0 is similar to
the discussion between qk and dk in Eq. �2�. Thus, Eq. �13�
represents an r�-directional toppling of ��+1� square S with
r�=�kqk�.

Based on the above, relaxations described by Figs. 3�a�
and 3�b� correspond to the topplings described by Figs. 3�d�
and 3�e�, respectively. The example provided by Fig. 3�b�
refers to the fact that the total � grain number of OIH

* equals
that of H**. However, OIH

*�H**. In other words, the �
grains redistribute inside the RG cell and no � grain is sent
outside of the RG cell. This is called grain redistribution and
corresponds to Eq. �13� with Q�= �0,1 ,0 ,0 ,0 ,0� from Eq.
�5�.

Technically, each relaxation characterized by Eq. �11� is
well marked by a record �H* , I ,�. The probability for any
definite relaxation is constructed in terms of n� ��� and p� ���.
First, the probability of the occurrence of an initial height
configuration within a cell, as listed in Figs. 1�c� and 1�d�, is
weighted by WH* = �nhLT

��� ��nhLB

��� ��nhRT

��� ��nhRB

��� �. Second, the
probability of picking a specific I is XI�H*�=1/4 because
there are only four choices, i.e., I=LT, LB, RT, or RB as
shown in Fig. 1�e�. Furthermore, for a given initial height
configuration H* and a given I, the probability of evolving
through a specific toppling path = ��Il ,Ql�� is Y�H* , I�
=�l=0

N �prl

��� /mrl
�, where Ql= �rl , q̂l ,q1l ,q2l ,q3l ,q4l� corre-

sponds to probability prl

��� /mrl
. Here, we assumes that

Y�H* , I� is independent of Il. Thus, a relaxation described
by Eq. �11� has a probability of

CH*,I, = WH*XI�H*�Y�H*,I� , �14�

where �H*�I�CH*,I,=1.

IV. RG EQUATIONS AND A SIMPLE
SAMPLING TECHNIQUE

The RG transformation between Eqs. �11� and �13� is
launched from the issue of probability. Note that only active
relaxations will take part in the RG transformation. Sam-
plings of Eq. �11� are useful only for the records implement-
ing active relaxations. Thus, the probabilities of interest
should be renormalized accordingly. The �H* , I ,� of an ac-
tive relaxation is denoted by �Ha

* , Ia ,a�. We group all dif-
ferent Ha

* into a set �Ha
*�. In addition, all different Ia gener-

ated from one fixed Ha
* are stored in a set �Ia�Ha

*��. Moreover,
all a generated by a fixed Ha

* and a fixed Ia are collected
into a set �a�Ha

* , Ia��. This implies that �H*��Ha
*� �I��Ia�Ha

*��

����a�Ha
*,Ia�� CH*,I,�1. By reweighing WH*, XI, Y, and

CH*,I, to

WH*
# = WH*� �

H*��Ha
*�

WH*� ,

XI
#�H*� = XI�H*�� �

I��Ia�Ha
*��

XI�H*�� ,

Y
# �H*,I� = Y�H*,I�� �

��a�Ha
*,Ia��

Y�H*,I�� ,

CH*,I,
# = WH*

# XI
#�H*�Y

# �H*,I� , �15�

we achieve the normalized condition �H*��Ha
*� �I��Ia�Ha

*��

����a�Ha
*,Ia�� CH*,I,

# =1.
Each active relaxation on the �th stage is equipped with

r�=�k=1
4 qk�, which will be referred to a Tr� on the ��+1�th

stage. We divide �a�Ha
* , Ia�� into the subsets �a

�r���Ha
* , Ia��

subject to definite toppling directions where �a�Ha
* , Ia��

=�r�=0
4 �a

�r���Ha
* , Ia��. In brief, the normalized probability of

the r�-directional toppling p
r�
��+1� is expressed in terms of

pr�
��+1� = �

H*��Ha
*�

WH*
# � �

I��Ia�Ha
*��

XI
#�H*�� �

��a
�r���Ha

*,Ia��

Y
# �� ,

�16�

where �r�=0
4 p

r�
��+1�=1. Note that the right-hand side of Eq.

�16� is a function of p� ��� since WH*
# will be a function of p� ���

through the transformation in Eq. �10�, XI
#�H*� is a number,

and Y
# is also a function of p� ���. Equation �16� describes the

relationship between p� ��+1� and p� ���.
There is no barrier for preparing �Ha

*� on a 2�2 cell
because the total number of H* is only 44 and the number of
the candidates for H*� �Ha

*� is much less than 44. Thus, the
analytic forms of WH*

# and XI
#�H*� of Eq. �15� are accessible.

However, contrary to the directly achievable Y
# �H* , I� in the

previous treatment �7,13�, obstructions occur in the corre-
sponding enumeration due to multiple topplings and grain
redistribution. This is because Y

# �H* , I� requires all informa-
tion of �a�Ha

* , Ia�� which may contain an infinite number of
elements. Therefore, we consider in turns the total normal-
ized probability of active relaxations generated from a fixed
H*� �Ha

*� and a fixed I� �Ia�Ha
*��, corresponding to the

r�-directional toppling of ��+1� square S

Zr�
# �H*,I� = �

��a
�r���Ha

*,Ia��

Y
# =

�
��a

�r���Ha
*,Ia��

Y

�
��a�Ha

*,Ia��

Y

, �17�

where �r�=0
4 Zr�

# �H* , I�=1. If p� ��� is known, Zr�
# �H* , I� can be

estimated by the simple sampling technique described in the
next paragraph.

In order to determine the value of p� ��+1� through Eq. �17�
for a known p� ���, the procedure is as follows: �i� Prepare an
H* and an I. Set �z0 ,z1 ,z2 ,z3 ,z4�= �0,0 ,0 ,0 ,0�, ��H* , I�=0,
and t=0, where t is a counter for the number of triggers. �ii�
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The value of t increases by one, i.e., t→ t+1. For the pre-
pared �H* , I�, start the sandpile dynamics by using the top-
pling rule listed in Eq. �2�. When a � square topples, a speci-
fied Ql of Eq. �11� is randomly assigned to its toppling by
probability prl

��� /mrl
. The dynamics will stop when all �

squares are stable simultaneously. If the generated relaxation
is an active relaxation, record Q�= �r� , q̂� ,q1� ,q2� ,q3� ,q4�� of
Eq. �13� after mapping Eq. �11� to Eq. �13�, set ��H* , I�=1,
and force zr�→zr�+1. �iii� Repeat step �ii� until t= tc where tc
is the threshold of t. The index ��H* , I� is used to determine
whether there is any active relaxation among the relaxations
generated. After the simple sampling procedure is finished,
��H* , I�=1 denotes that H*� �Ha

*� and I� �Ia�Ha
*��. Other-

wise, ��H* , I�=0 denotes I� �Ia�Ha
*��. For ��H* , I�=1, since

all nonactive relaxations are not counted in �ii�, zr� / ��r�=0
4 zr��

is a normalized probability and we expect Zr�
# �H* , I�

�zr� / ��r�=0
4 zr�� if tc is large enough.

The simple sampling will also benefit the calculations of
WH*

# and XI
#�H*� from a numerical aspect. An index ��H*�

=1 or 0 for �I=LT,LB,RT,RB��H* , I��or=0 is provided to
judge if H*� �Ha

*� or H*� �Ha
*�, respectively. Thus,

WH*
# = ��H*�WH*��

H*

��H*�WH*� , �18�

and

XI
#�H*�

=	��H*,I�� �
I=LT,LB,RT,RB

��H*,I�� for ��H*� = 1

0 for ��H*� = 0.



�19�

For a given p� ���, the value of p� ��+1� will be achieved by
treating Eqs. �17�–�19� for the simple sampling procedure.

In this paper, we start all RG calculations on a square
lattice by setting p� �0�= �0,0 ,0 ,0 ,1� and tc=10 000. By esti-
mating WH*

# , XI
#�H*�, and Zr�

# �H* , I� through the simple sam-
pling procedure, we obtain the value of p� �1�. Meanwhile, p� �2�

is achievable by using simple sample with starting point p� �1�.
We iterate this procedure to �=�. Our first test is identical to
the system in Ref. �7� where multiple topplings �14� and
grain redistribution �15� are not considered. The resultant
fixed point p� ���= �0,0.294,0.435,0.229,0.042� is very close
to the one acquired through exact enumeration p� ���

= �0,0.295,0.435,0.229,0.041� �7�. Our second test �16� is
the same as the system in Ref. �11� where grain redistribution
is considered but multiple toppling is not considered. The
resultant fixed point p� ���= �0.090,0.345,0.379,0.161,0.025�
is very close to the one acquired through exact enumeration
p� ���= �0.091,0.345,0.379,0.161,0.024� �7�. The above two
cases provide evidence that our simple sampling RG scheme
is valid and useful.

V. RESULTS AND DISCUSSIONS

This RG scheme has been polished by incorporating the
critical exponent of area �6�. Suppose that an avalanche ob-

served on the �th stage has A����1. The probability of this
avalanche observed on the ��+1�th stage corresponding to
A��+1�=0 is

G = �
b����

b���+1�

P�A�0��dA�0��
b����

�

P�A�0��dA�0� = 1 − 22�1−��.

�20�

Alternatively, G also corresponds the probability of a toppled
� square not being able to induce the topplings of its NN,
i.e.,

G = �
r=0

4

pr
����1 − n4

����r. �21�

At �=�, the value of G is produced by putting the obtained
p� ��� and n� ��� in Eq. �21�. Subsequently, the value of � will be
obtained through Eq. �20�.

The n� ��� and � obtained from the first test of Sec. IV,
where multiple topplings and grain redistribution are not
considered, are listed in result �I� of Table I. The values of
n� ��� and � of previous RG �7� are also listed in Table I. In
order to distinguish the effects of grain redistribution and
multiple topplings, we simulated cases �II�, �III�, �IV� for
considering grain redistribution only, multiple topplings only,
and both grain redistribution and multiple topplings, respec-
tively. We obtained p� ���= �0.102,0.352,0.372,0.151,0.023�,
n� ���= �0.013,0.100,0.313,0.574�, and �=1.291 for case �II�,
p� ���= �0,0.209,0.425,0.294,0.072�, n� ���= �0.032,0.164,
0.355,0.449�, and �=1.258 for case �III�, and p� ���

= �0.024,0.219,0.415,0.277,0.065�, n� ���= �0.030,0.158,
0.350,0.462�, and �=1.268 for case �IV�. All results are
listed in Table I.

The corresponding exact solution of height probabilities
�3�, the predictions of exponent �=1.25 based on scaling
argument �17�, and �=1.20 �18� based on the simulations
from the finite-size hypothesis are all listed in Table I. For
height probabilities, result �III� is the closest to the exact
values among results �I�, �II�, �III�, and �IV�. Furthermore,
results �I� and �III� are better than results �II� and �IV�, re-
spectively. This implies that the appearance of the grain re-
distribution worsens the values of n� ���. On the other hand,
results �III� and �IV� are better than results �I� and �II�, re-
spectively. This implies that the appearance of multiple top-
plings improves the values of n� ���. The obtained � for these
four cases are not far from �=1.25 �17� or �=1.2 �18�.

In Ref. �19�, the number of annihilated grains through a
toppling is defined as the dissipation rate. Thus, in our RG
scheme, p0

��� can be considered as the dissipation rate on the
�th stage. Since Vespignani and Zapperi �19� stated that one
of the requirements for a sandpile system exhibiting critical-
ity is the dissipation rate being zero, it suggests that p0

���=0
should hold. The above provides the reason why the results
of �I� and �III� with p0

���=0 are better than those of �II� and
�IV� with p0

����0, respectively.
We applied this scheme to a triangular lattice where each

� triangle has an area ����=3� �8� and six NNs. Then, a ��
+1� triangle containing three � triangles is expressed by RG
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parameters n� ���= �n1
��� ,n2

��� ,n3
��� ,n4

��� ,n5
��� ,n6

���� and p� ���

= �p0
��� , p1

��� , p2
��� , p3

��� , p4
��� , p5

��� , p6
����. We adjust the equations

from the version of a square lattice to those of a triangular
lattice, e.g., Eqs. �10�, �20�, and �21� are changed to nj

���

=� j+=6,−1
7−j � j+ /� j+=1

6 j+� j+, G=1−3�1−��, and G=�r=0
6 pr

����1
−n6

����r, respectively.
For triangular cases, taking p� �0�= �0,0 ,0 ,0 ,0 ,0 ,1� and

tc=10 000 for simple sampling, we consider cases �I�, �II�,
�III�, and �IV� as square cases. This obtains p� ���

= �0,0.0000334,0.00244,0.0571,0.296,0.471,0.173�, �0,
0.0000334, 0.00244, 0.0571, 0.296, 0.471, 0.173�, �0,
0.0000177, 0.00242, 0.0575, 0.296, 0.470, 0.174�, and �0,
0.0000177, 0.00242, 0.0575, 0.296, 0.470, 0.174� for cases
�I�, �II�, �III�, and �IV�, respectively. Case �I� is identical to
the system of the previous study �8�. We list the n� ��� and �
for result �I� and the previous RG �8� in Table I. The consis-
tency between these two results shows the reliability of our
simple sampling procedure. Furthermore, the n� ��� and � of
results �II�, �III�, and �IV� are almost the same as those of
result �I�. It implies that both grain redistribution and mul-

tiple topplings have nearly no impact on the RG calculations.
It is different from the square cases where both grain redis-
tribution and multiple topplings affect the RG results. Since a
��+1� triangle contains only three � triangles, but a ��+1�
square contains four � squares, we expect that multiple top-
plings and grain redistribution will play more important roles
when a RG cell contains more subunits.

In summary, a numerical RG scheme for calculating the
height probabilities and the area exponent of BTW sandpile
is provided. Through the developed simple sampling proce-
dure, it is achievable to incorporate multiple topplings and
grain redistribution into RG equations. Compared with the
previous RG, our RG improves the values of the fixed point
of height probabilities for a square lattice. The use of our
sampling method is well verified and has the potential for
further RG investigations.

ACKNOWLEDGMENT

C.-Y.L. acknowledges the support from the National Sci-
ence Council of Taiwan, R.O.C. under Grant No. NSC 94-
2112-M-194-010.

�1� H. J. Jensen, Self-Organized Criticality �Cambridge University
Press, New York, 1998�.

�2� D. Dhar, Phys. Rev. Lett. 64, 1613 �1990�; S. N. Majumdar
and D. Dhar, Physica A 185, 129 �1992�.

�3� V. B. Priezzhev, J. Stat. Phys. 74, 955 �1994�.
�4� R. J. Creswick, H. A. Farach, and C. P. Poole, Jr., Introduction

to Renormalization Group Methods in Physics �Wiley, New
York, 1992�.

�5� P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
�1987�.

�6� L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett.
72, 1690 �1994�.

�7� E. V. Ivashkevich, Phys. Rev. Lett. 76, 3368 �1996�.
�8� Vl. V. Papoyan and A. M. Povolotsky, Physica A 246, 241

�1997�.
�9� J. Hasty and K. Wiesenfeld, Phys. Rev. Lett. 81, 1722 �1998�.

�10� Y. Moreno, J. B. Gomez, and A. F. Pacheco, Phys. Rev. E 60,
7565 �1999�.

�11� E. V. Ivashkevich, A. M. Povolotsky, A. Vespignani, and S.
Zapperi, Phys. Rev. E 60, 1239 �1999�.

�12� We use the notation n4
��� to express ���� of Refs. �3,11�.

�13� C.-Y. Lin and C.-K. Hu, Phys. Rev. E 66, 021307 �2002�.
�14� When one specified � square topples once, we freeze this �

square. That is to prevent this � square from the second top-
pling no matter what the height of that � square is.

�15� In our RG scheme, the grain redistribution inside a RG cell of
the �th stage induces a zero-directional toppling of the ��
+1�th stage. Not considering the grain redistribution is

TABLE I. The height probabilities and � for square �SQ� and triangular �TR� lattices.

SQ n1
��� n2

��� n3
��� n4

��� — — �

Exact solution �3� 0.074 0.174 0.306 0.446 — — —

Prediction �17� — — — — — — 1.25

Prediction �18� — — — — — — 1.20

Previous RG �7� 0.021 0.134 0.349 0.496 — — 1.248

Our result �I� 0.021 0.134 0.349 0.496 — — 1.248

Our result �II� 0.013 0.100 0.313 0.574 — — 1.291

Our result �III� 0.032 0.164 0.355 0.449 — — 1.258

Our result �IV� 0.030 0.158 0.350 0.462 — — 1.268

TR n1
��� n2

��� n3
��� n4

��� n5
��� n6

��� �

Simulation 0.058 0.094 0.139 0.188 0.240 0.281 —

Previous RG �8� 0.036 0.135 0.198 0.210 0.211 0.211 1.367

Our result �I� 0.036 0.135 0.198 0.210 0.210 0.211 1.367

LIN, CHENG, AND LIAW PHYSICAL REVIEW E 76, 041114 �2007�

041114-6



achieved by the followings: �i� For the �th stage, keep p0
���

=0. �ii� For the ��+1�th stage, drop all active relaxations with
r�=0 from �a�Ha

* , Ia��. This will force p0
��+1�=0.

�16� In order to access the system in Refs. �3,11�, we freeze all �
squares i with hi�3, i.e., such a � square cannot topple for-
ever even if the height later evolves to hi�4. This induces that
Eqs. �8�, �9�, and �10� are not valid. However, Eq. �10� for j
=4 still works because we consider it from the viewpoint of

the balance between input flow and output flow.
�17� V. B. Priezzhev, D. V. Ktitarev, and E. V. Ivashkevich, Phys.

Rev. Lett. 76, 2093 �1996�.
�18� C. Tebaldi, M. De Menech, and A. L. Stella, Phys. Rev. Lett.

83, 3952 �1999�.
�19� A. Vespignani and S. Zapperi, Phys. Rev. Lett. 78, 4793

�1997�; Phys. Rev. E 57, 6345 �1998�, and references therein.

NUMERICAL RENORMALIZATION-GROUP APPROACH… PHYSICAL REVIEW E 76, 041114 �2007�

041114-7


